Using Logic Operators to hide or show objects

Preparations

- Open a new GeoGebra file.
- Hide the Algebra View and coordinate axes (View menu).
- Show the Input Bar (View menu).
- Set the number of decimal places to 0 (menu Options Decimal places).

Introduction of new tools

Angle Bisector tool, ∇_{8} Check Box to Show/Hide Objects

Hints: Don't forget to read the toolbar help if you don't know how to use a tool. Try out new tools before you start the construction.

Instructions

7	In the Input Bar type: $\mathrm{dEB}=$ distance $[\mathrm{E}, \mathrm{B}]$ and press return. Press CTRL + SHIFT + A to see the Algebra View if not already visible. Slide point E along $A B$ and observe the value of "dEB" change in the Algebra View window.
8	Draw in the diagonal $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in the translated parallelogram.
9	Right-click on the diagonal between B^{\prime} and C^{\prime} and select Properties from the list. Fill in the Advanced Condition as shown in the picture below: Note that simply typing an equal sign from the keyboard will not suffice, the Logic equality symbol must be chosen from the drop-down list in order for the condition to work. Click "Close" in the properties box What do you now notice as point E is slid along AB ?
10	Use the Angle Bisector tool to bisect angles $B^{\prime} C^{\prime} D^{\prime}$ and $C^{\prime} D^{\prime} B^{\prime}$. You may find it helpful to have a small gap between E and B for these constructions here and for some of the stages below too.
11	Use the Intersect Two Objects tool to create a point on the intersection of the above two angle bisectors, point F, say. Right-click on both angle bisectors in-turn and de-select Show Object to hide them.
12	Use the Perpendicular Line tool to drop a perpendicular from the angle bisector intersection point F onto the line segment C'D'. Use the Intersect Two Objects tool to create a point on the intersection of this perpendicular with $C^{\prime} D^{\prime}$, point G, say. Right-click on the perpendicular line and de-select Show Object to hide it.
13	Use the Circle with Centre through Point to draw a circle centred on F having radius FG. Right-click on the points F and G and de-select Show Object to hide them in turn. Now slide point E along AB - what do you notice?

14	Click on the Check Box to Show/Hide Objects icon and then click just above your diagram in an area of free space in the Geogebra screen. This will open up its dialogue box. As shown below give this checkbox the name "InCircle" - don't put gaps between any letters. Next just click the mouse on the circle to select it and then click the Apply button to close the dialogue box. You should now see the Checkbox called InCircle on your screen: $\bar{\nabla}$ InCircle What do you notice when this box is checked and un-checked?
15	Right-click on the InCircle Checkbox, make a note of its name. It may have written down something like "Boolean Value m", this just means its name is just m. Once again using the Advanced Tab write dEB $\stackrel{?}{=} 0$ into the Conditions text box, entering the logical equal symbol as in step 9 above. Click on close
16	Experiment moving point E along $A B$, sometimes with the InCircle Checkbox checked, sometimes not. What do you notice and how can it logically be remedied? Answer on next page!

	The problem is that the incircle only vanishes as points E and B are separated if the InCircle Checkbox is unchecked
17	To remedy this right-click on the incircle and from the Advanced Tab in its Properties you need to have the logical statement stating that the condition to show the incircle is that its Checkbox, m, must be checked ($m=1$) AND the distance between points E and B is zero ($d E B=0$). This translates to the formal logical statement: $m \stackrel{?}{=} 1 \wedge d E B \stackrel{?}{=} 0$ Therefore, type this into the Condition text box for the incircle and experiment again sliding point E along $A B$ to see if it does as expected.

V InCircle

